Loading [MathJax]/jax/output/CommonHTML/jax.js

새소식

시계열 분석

ADF(Augmented Dickey-Fuller) 검정

  • -

ADF(Augmented Dickey-Fuller) 검정시계열 데이터가 정상성을 가지고 있는지 확인하기 위해 사용되는 통계적 검정 방법이다. 이 검정은 시계열 데이터에 단위근이 있는지 없는지를 판단하여 정상성 여부를 결정한다. 단위근이 존재하면 시계열이 비정상적이라고 간주된다.

ADF 검정은 아래의 회귀식을 사용하여 수행된다.

 

Δyt=α+βt+γyt1+δ1Δyt1+...+δp1Δytp+1+εt

 

여기서,

Δyt=ytyt1은 시계열의 차분을 나타낸다.

α는 상수항, βt는 시간 추세를 나타내며, γ는 단위근을 검정하는 계수다.

p는 차분의 지연(lag)를 나타낸다.

εt는 오차항이다.

ADF 검정의 귀무 가설(Null hypothesis, H0)은 γ=0, 즉 단위근이 존재한다는 것이다. 대립 가설(Alternative hypothesis, H1)은 γ<0, 즉 단위근이 없다는 것이다.

 

검정 통계량은 다음과 같이 계산된다.

 

ADF=(γ̂0)/SE(γ̂)

 

여기서 γ̂γ의 추정치이며, SE(γ̂)γ̂의 표준오차다.

 

ADF 통계량을 계산한 후, 해당 통계량이 임계값보다 작으면 귀무 가설을 기각하고 시계열이 정상성을 가진다고 결론을 내릴 수 있다. 그렇지 않은 경우에는 단위근이 존재하며, 시계열이 비정상적이라고 볼 수 있다.

 

이 검정을 통해 시계열 데이터의 정상성을 확인하고, 필요한 경우 차분 등의 전처리를 수행하여 데이터를 정상화시킨 후 예측 및 모델링에 사용할 수 있다. ADF 검정은 시계열 분석에서 매우 중요하며, 다양한 시계열 분석 기법의 전제조건으로 사용된다.

Contents

포스팅 주소를 복사했습니다

이 글이 도움이 되었다면 공감 부탁드립니다.